
Sustainable software systems - Creating long lasting software

!

!

Sustainable
Software Systems!

!
!

Creating long lasting software!!!!!!!!!
 sus·tain·able /sə-ˈstā-nə-bəl/

!
Adjective: Using a resource so that the resource is not

depleted.

Copyright ⓒ 2014 Sternberg Consulting LLC

Sustainable software systems - Creating long lasting software

Introduction!
The origin of this paper stems from a synthesis that has taken form in my mind based
on my experience with software system life-cycles combined with recent literature on
sustainability. As with most progressive work, I was not able to see or formulate an
accurate problem statement until I reached out of the daily routine and took on a fresh
and complete different perspective.!!
For a long time, it seemed like the new Agile movement was the answer to everything
that was wrong with the waterfall software system paradigm. Alas as years since the
Agile inception goes by there’s a lingering feeling that there is still a lot of room for
improvement in the software lifecycle process. Agility and lean manufacturing concepts
certainly seems like the right answer for developing software but leaves a lot unsaid
about maintaining it or even keeping it alive.!!
Why is it then that once a software system has been developed (of course by using
Agile/Lean techniques), we simply can’t just hand over the “system keys” to the
custodians of the new system, erase it from memory and then move on to the next
project? !!
The answer is simple: The 2nd law of thermodynamics.!!
This law (like many other laws of nature) has a fundamental effect on our universe and
everything in it, objects as well as processes. Even human thoughts and emotions are
affected by it. In the next section, I’ll explain why and how the 2nd law of
thermodynamics is so devastating to our software systems. Other sections included
herein are, “How software dies”, “Hardware is dead, long live hardware”, “Misleading
metaphors”, “The true life-cycle”, “Knowledge by synthesis”, “Supporting echo-systems”,
“Nature 2.0 - The Mammal Edge” and “Concluding remarks”.!!
There will be no code examples, nor mention of specific software languages in the text
that follows. For a system to be truly sustainable it has to stand the test of time. This
sometimes might even involve a complete refactoring into a new language paradigm.
The following sections will focus on natural principles and observations of human
interactions that is or should be time invariant. As a reference for the remaining of this
text, lets define a software system as sustainable if the system’s initial feature set still
exists after an arbitrary point in time with or without augmentations such that it still
provides meaningful results (i.e is still operational):!

∀ n > 0 : Ft0(x) ∩ F’tn(x) ≠ ∅!
I.e. a software system is sustainable if for all n, the intersection of the initial feature set F
(x) and the feature set F’(x) at time n after the initial time is non-empty)!
This definition implicitly states that if the system is still working but it’s current feature set
have nothing in common with the initial one, it’s a different software system altogether
and is probably still working due to constant tampering!

Copyright ⓒ 2014 Sternberg Consulting LLC

Sustainable software systems - Creating long lasting software

The 2nd law of thermodynamics!
S’ - S ≥ 0 (s = entropy at an earlier point in time. s’ = entropy later on)!
I.e. the entropy in a closed system always strives for a maximum. But what does that
have to do with software systems one might ask? The concept of entropy as used in
classic thermodynamics doesn’t seem to apply directly to software other than the more
general observation that without adding energy, any system will become more
disordered. The best everyday example of that are my children’s rooms. If you move a
single object the room would be less messy since you now would have a local cluster of
organization, i.e. a state of maximum entropy. However if we make the leap over to
statistical mechanics and it’s definition of entropy, it quickly becomes more clear.
Statistical mechanics defines a macroscopic state in terms of it’s microscopic states.
Translated further to software systems, macro states are the different states that the
overall system can be in (on, off, running, waiting, processing, halted, crashed, etc..)
and each of these are defined by the set of micro state values for all sub-processes,
memory contents, internal registers, etc...) that can be grouped together to represent
each macro state. The entropy of a macro state is defined as the number of sets of
micro states that it includes. The 2nd law of thermodynamics applied to software
systems then reads: “Unless work is done, a system’s entropy will always increase until
it gets to a macro state with the highest possible entropy”. I.e. if a software systems is
not maintained each of the components will in time always reach the most probable
macro state (which typically is “not working” since of all possible combinations of micro
states most sets would belong to the “not working” macro state). Work in this context
represents typical every day tasks that one might perform on a system - backups, delete
log files, add memory, fix bugs, add features, etc...!
A more direct and popular interpretation would be: Unless someone maintains a
software system it will always end up useless. What I tried to show above is that this
statement is not only a “hunch”, it’s one of the most fundamental laws of our universe.!
There is no “free lunch” when it comes to system maintenance, someone has to do it.
The question that remains is who and how? Read on to find out...!
!!
How software dies!
If the group of architects, developers and testers responsible for implementing a
software system are all disbanded, that software is for all practical purposes “dead”. It
might still be running in a production environment. However it would be more like a
decapitated rooster still running around the chopping block. As discussed in the
previous section, the 2nd law of thermodynamics guarantees that without anyone
around to perform work, the system will sooner or later become useless. A common
misconception is that as long as there are lots of documentation covering all aspects of
the software system, all one has to do is hiring new people to pick up from the old group
when time comes (i.e. when the system starts to act up). Anyone actually being
responsible for a system under these conditions knows that this is extremely hard to
achieve.!

Copyright ⓒ 2014 Sternberg Consulting LLC

Sustainable software systems - Creating long lasting software

One of the main issues stems from an early observation in 1968 about systems
development that is commonly referred to as Conway’s Law: “Any organization that
designs a system will inevitably produce a design whose structure is a copy of the
organization's communication structure”. A more clear way to rephrase this could be:
Anywhere there’s a team boundary, you will find a software boundary. From this
observation it is easy to understand the similar phenomena “Not Invented Here”, i.e. the
tendency to rather do the work from scratch within the team instead of (re)using a
solution made by an outside group. These two concepts that predicts intergroup
behavior are based on teams existing in the same time frame. However in the scenario
of an abandon system there is also a time-shift involved, i.e. the disbanded group is no
longer available to interact with (other then through the document artifacts left behind).
The tendency to rather do it from scratch internally instead of trusting existing solutions
made by the previous team is still equally true. Particularly if the documentation left
behind is hard to comprehend. Which typically will be the case if it was produced by the
previous team members who might have made a few too many assumptions about the
level of preexisting knowledge on behalf of the reader.!!
There are of course a number of other circumstances that would more or less kill a
software system even with a sufficient number of existing team members around.
Dependent software or hardware resources becoming obsolete. Thanks to Moore’s law
this is an ongoing process and must be planned for by allocating resources (financial
and human) in time to perform any necessary upgrades. Lean manufacturing advocates
the concept of not making a final choice until the latest responsible point in time.
However, that concept is more applicable as a guide for making the final cut when
moving forward with multiple solutions (i.e. set based design). In this scenario it is more
useful to define a point in time when the upgrade must commence in relationship to
other known or estimated points in time and durations:!

t = point in time when upgrade must start.!
twrk = duration of upgrade work.!
tord = point in time when new hardware / software must be ordered.!
tdel = duration for new hardware / software to be delivered.!
tobs = point in time when old hardware / software becomes obsolete.!
terr = duration of margin for error during the upgrade process.!
tdec = point in time when the decision to upgrade must be made.!
tprep = duration of preparation work between tdec and t.!
Since we are mixing points in time with durations of time we can express points in time
with the corresponding epoch value (i.e. seconds since 1/1/70) instead of a date and
durations as seconds. Then we get the following basic expressions:!
tdec < tord < t < tobs ; tdec + tprep < t ; t + twrk + terr < tobs ; tord + tdel < t!
So the appropriate time t for any upgrade work to start is one that is true for all of the
above expressions. In the section “Knowledge by synthesis (not by fact enumeration)” I
will explain in more detail why documentation alone is insufficient as a vehicle for
knowledge transfer.!!

Copyright ⓒ 2014 Sternberg Consulting LLC

Sustainable software systems - Creating long lasting software

Hardware is dead, long live hardware!
One of the biggest breakthroughs in computing during the last couple of years is the
emergence of the Cloud and more specifically the manifestation of it that could be called
Platform-as-a-Service (PaaS). Software-as-a-Service (SaaS) has been around for a
while, but is merely a preview of the true power of the Cloud. The main reason why the
SaaS concept never struck big with large companies is that most such offerings are
provided as a black-box and shielded from the rest of the organizations IT-infrastructure
(i.e. not very useful). However, just like many other buzz-word technologies (AI, O-O,
Patterns, etc...) it’s now part of our every day computing environment (gmail, Google
Docs, Google+, Facebook, twitter, etc). The largest struggle for large companies (and
startups too for that matter) is the sprawling cost of IT-administration. As the need for
processing power and data storage increases with growing success, so does the need
for administrators that can tame the growing fauna of specialized servers, network
infrastructure and worst of all, an intertwined mix of custom and off-the-shelf software
that is in constant need of version upgrading and integration.!!
In the view of the effects of the 2nd law of thermodynamics as described earlier,
together with an understanding that with more computational nodes involved in any
given process, the more fragile the system will be. We will sooner or later reach the
conclusion (and experience it empirically), that the more mixed technical infrastructure
we acquire, the deeper down the rabbit hole we get. To understand why an increase in
system nodes makes for a more fragile system, let’s turn to basic math:!
Assume that we have 6 systems involved in a given process (e.g. client, network
infrastructure, application firewall, API server, business object server, database server)
and each system has a probability of “working just fine” equal to 90% (or 0.90). Then
the probability for the total process chain to “work just fine” is equal to: 0.90 x 0.90 x
0.90 x 0.90 x 0.90 x 0.90 = 0.53 = 53%!!
Enter Platform-as-a-Service. What this really does for companies is that it completely
abstracts away the notion of hardware. Gone are forever the notion of hardware nodes,
server names, IP-addresses, environmental/configuration variables, server-server
communication, etc.. Instead there is only “the software eco-system” which best can be
described as an limitless scalable orchestration of distributed software functions
deployed on the internet (i.e. SaaS or more in vogue RESTful APIs). The orchestration
of these SaaS/RESTful APIs is done in a high level langue supported by the PaaS
provider. The greatness does not lie in the fact that a modern high level language is
being used, the greatness lies in the fact that the software no longer is targeting a
specific server or cluster of servers, in fact the software is oblivious to the concept of
servers. Instead the software deals with interfaces whose most specific addressability is
not a hardware node but an internet domain. No matter what the service need is (e.g.
web-service, geo-location data, file contents, database records, etc) it’s accessed
through an internet available URL. Not even when deploying a PaaS implementation will
server names be exposed to the developer, mainly because it’s completely non-
deterministic.!!

Copyright ⓒ 2014 Sternberg Consulting LLC

Sustainable software systems - Creating long lasting software

So why is this so special? Because looking at the statistical mechanics entropy model,
there are far less micro states involved for each macro state with the consequence that
the set of all micro states for any given “failed” macro state has orders of magnitude
fewer micro states than for a system made up of a plethora of mixed server nodes. Thus
making it much, much more stable when ignored. Yes there’s still lot’s of hardware
involved, but it’s completely removed from the sphere of influence and control of the
implementing organization and are instead taken care of by someone else which have
been smart enough to create a huge scalable distributed network of cheap homogenous
commodity servers that can crash and be replaced by a very small group of
administrators during run-time without anyone noticing.!!
It’s important to understand that the concept of server virtualization is not the same as
PaaS. It will actually makes things worse by introducing even more micro states for
each macro state (e.g. more server names, ip-addresses, environment/configuration
variables, etc...). The winning concept is still the magic trick of abstracting away the
concept of hardware altogether. It’s almost like we traveled back in time to 1960 and
experienced mainframe computing all over again, except these born-again mainframe
software systems do not run on hardware and have endless scalability.!!

Copyright ⓒ 2014 Sternberg Consulting LLC

Sustainable software systems - Creating long lasting software

!
Misleading metaphors!
Metaphors are very helpful whenever we want to quickly explain or understand a new
concept. The reason for this is that the human mind really is only a pattern matching,
hierarchical classification machine that loves puzzles. Experiencing an old domain with
a new twist or a new domain with references to a known old domain allows the brain to
eagerly synthesize new patterns that can be added to its previous structures. Being
presented with a complete green field domain is tougher, since there might be no
previous structure to build upon. However if the chosen metaphor is incorrect or
misleading, irreparable damage to how our mind perceive things will occur. A great
example are the two most commonly (mis)used metaphors for software systems - the
“Factory” and the “Engineered Structure”.!!
What’s wrong with the “Factory” metaphor?!
This metaphor is not entirely wrong, but believing that implementing software is like
running a factory is plain wrong. Implementing software is like building a factory
including designing and building all of the machinery that the factory needs to
manufacture products. But as any designer of factories will tell you, building a factory is
an “Ad hoc” process where no solution looks like the other (i.e just like implementing
software). Actually using the software once it has been put in production is like running
a factory, so this metaphor is slightly off and offers no help at all in better understanding
the software development process.!
!
What’s wrong with the “Engineered Structure” metaphor?!
The “Engineered Structure” metaphor has similar issues as the “Factory” metaphor. It
suggests that implementing software is an entirely deterministic and repeatable process
where all design decisions can easily be looked up in engineering charts and tables.
Alas the biggest fallacy of this metaphor is that it suggests that software is a static
construct, much like the mechanical machines, buildings or other common civil
engineering structures that this metaphor is based on. Not so - most software is created
to support a business organization and is under constant pressure to change and adapt
to an ever-changing business climate. Modern day business processes are better
described as complex adaptive systems (CAS) rather than static flows of information
and decision points.!!
So is Complex Adaptive Systems the correct metaphor then?!
Not really, much like how the factory metaphor is better suited to describe software
systems running in a production environment, the CAS metaphor works best when
evaluating the progress of a software system in relationship with the business process it
supports. Read the next section for a more natural and better fitting metaphor as far as
understanding the software implementation process. 

Copyright ⓒ 2014 Sternberg Consulting LLC

Sustainable software systems - Creating long lasting software

!
The true life-cycle!
We are now ready to formulate a better way to look at the software process from a
sustainability perspective. Just as we have used laws of nature earlier, its time to once
again look to nature to discover a process whose longevity will make even the most
long lived mainframe implementation look like the new kid on the block; the growth and
decay cycle of organic matter powered by photosynthesis. In it’s natural form it has
been around since the formation of organic matter. In it’s human controlled form it has
sustained for as long as 10,000 years (some rice paddocks in China have been around
this long). We also know what will happen when the basic structure of this process is
being violated - extinct cultures, soil erosion and formation of sand deserts. There are
profound learnings to be made from this process once we formulate an appropriate level
of abstraction so it can be applied more generically outside the domain of agriculture.!!
First a very basic observation: In our western society we tend to think about growth and
decay as the starting point and the absolute end of a process, mostly because we have
a hard time dealing with the concept of death. But once one studies this process more
closely it becomes clear that this is a short term, repetitive cycle, which has more do to
with replenishing and rejuvenating that the finality of death. The decaying organic matter
left behind after harvest acts as a catalyst for replenishing the soil with nutrients thanks
to the process of making the layer known as humus. Another basic observation is that
nature and the world’s cultures are defined by cycles of seemingly opposing forces: self-
organization/2nd law of thermodynamic, life/death, day/night, growth/decay, build/
destroy, work/rest, yin/yang, etc... It seems like there must be a very basic and
profound pattern at work here.!!
So how do we move from our traditional point of view of software implementation having
a project kick-off followed by lots of hard work ending with the deployment to
production?!!
It’s easy - if we look at any of the software projects that we have been involved with a
longer period of time, we’ll discover that it is a cyclic process. It’s just that compared to
the first implementation cycle, the effort involved in consecutive cycles is orders of
magnitude less. Perhaps one approach to better software sustainability would be to do
less but more often, while also making sure that resources are replenished between
cycles? !!
What does it mean to replenish resources and what happens if we don’t?!
Another important aspect of the growth and decay cycle in nature is the occurrence or
lack of diseases in the soil, crop, livestock and humans. What patterns do we see in
nature and how does it translate to software? When and why do nature thrive v.s. suffer
as far as diseases are concerned. Again, this is no small matter, there’s a reason why
we have been plagued by E.coli, mad cow, etc recently and there are certainly lessons
to be learned from it.!!

Copyright ⓒ 2014 Sternberg Consulting LLC

Sustainable software systems - Creating long lasting software

So by using nature as a metaphor we will try to better understand the following
concepts: How to better organize and plan work, how to keep resources replenished
and how to deal with defects.!!
To be more in sync with nature, look to existing practices of Agile iterative development
but also the new trend of continuos deployment. Shorter cycles of intense work with
periods of replenishment between. This doesn’t necessarily mean rest, more like
“sharpen the saw” as defined by Stephen R. Covey in the book “7 habits of highly
effective people”. Making sure to perform tasks outside of the daily routine to keep
energetic and enthusiastic about starting on the next cycle as well as investing in
appropriate software/hardware tools and reference materials.!!
Another key observation from nature - mono crops will always end with erosion, no
matter how much chemical fertilization and pesticides that are added. I.e. make sure
that team members don’t work on the same tasks over and over again. Adding
“chemical fertilization” and “pesticides” like tracking tools, time management systems,
computerized Agile management, hovering managers, threats of termination, etc.. will
not help in the long run. Better to trust that people will actually do what’s best for
themselves and the team by respecting their skills and making sure they have a variety
of tasks to work on. Daniel Pink’s book “Drive” is a great reference in understanding
what truly motivates people. The first deployment of a software system should be one of
many future steps, preferable with an initial feature set that is still meaningful to the
business. The same team can then (with some variation over time in staffing) continue
to work on the system or better yet, multiple systems to avoid macroscopic “mono crop”
fatigue.!!
Natures solution of dealing with disease is spelled abundance. There are no natural
processes that specifically targets disease in nature, rather by providing an abundance
both in amount and variety of nutrients, raw materials and fauna, major outbreaks of any
disease is naturally avoided. When humans disrupts this state of abundance, diseases
will inevitable follow. The key learning for the software process - don’t try to get away
with minimal resources, either in the level of knowledge or amount of people. Of course
no company can afford a hoard of software Ph.d’s on their projects, but making sure to
have a mix of people with lots of experience and/or education will certainly payoff
compared to hiring too few developers having only rudimentary knowledge of just one
programming language and no other skills. No matter how much “pesticides”
management tries to add to stave off “bugs” and delayed milestones.!!
Nature does provide a defense mechanism for outside threats, sort of…!
Any sufficiently developed organism (e.g. humans), can interpret natures own early
warning system; e.g. aposematism, bio indicators (e.g. mosses or Lichens) or indicator
species (e.g. Canaries).!!
Similarly, software systems should also utilize this strategy; e.g. automated tests,
automated production diagnostics (“phone home”) or click-stream analytic processing.!!

Copyright ⓒ 2014 Sternberg Consulting LLC

Sustainable software systems - Creating long lasting software

!
Knowledge by synthesis!
In this section we’ll look at how humans actually learn (a key to sustainability). A truly
sustainable software systems should be able to last for generations. This statement is
less ridiculous than it seem in the light of some of the mainframe systems that are still
around today. As long as the main feature set remains similar, one can claim that a
software system has sustained even across major changes such as switching operating
system, implementation language or database management system. Based on the
section “How software dies” earlier, we know that the best way to sustain a software
system is if we at all times have team members around with previous experience of it.
This doesn’t necessarily mean that we need to have all of the original team members
around (or any for that matter), rather there has to exist a tradition of keeping the
collective theory of the system alive as well as passing it on to new team members as
they join in. A software system can not easily be understood simply by reading
documentation. The only/most effective way of gaining understanding of a software
system is to combine system interaction with shared knowledge from other team
members periodically dispersed at a pace that the recipient can digest without being
overloaded. In order for anyone to be able to correctly modify a system without
unwanted side effects they need to be able to (at some capacity) simulate its behavior
in their own mind. This can’t be done without true understanding of the system, which
means that the mind needs to (re)create a mental model of the system’s feature set as
well as being able to simulate this at some level of abstraction that generates results
similar to running the system. No two team members will ever have the same mental
model of the system but as long as they can simulate its features with the same
simulated outcome, one would have too agree that it’s sufficient. Typically the process
of creating any mental model works like this: Formulate an initial naive model and
validate it with example features and data sets based on system discovery (i.e. using it,
reading about it and through peer collaboration). If the simulation doesn’t generate
correct results, modify the mental model slightly so it works for the failing example set.
Iterate this process until satisfactory results are generated (or give up). Based on this
description one can easily see that knowledge is created (synthesized) by lots of
iterative examples rather than trying to understand at once a predefined explicit model
defined by lots of detailed drawings and/or text paragraphs.!!
One helpful tool would be if the software could be “probed” in run-time and be made to
generate an audit/”breadcrumb” trail that could be mapped against the source code. It’s
very hard to predict software behavior by inspecting its source code only. It was even
proved as early as 1936 by Alan Turing that no software (Turing Machine) could exists
that could predict the outcome of all other software (some, yes - but not all). This is
popularly referred to as “The Halting Problem”. Such probing would also be very helpful
when resurrecting “dead” software. The simplest implementation would produce logs in
a log file with alphanumerical markers easily found by inspecting the source code. A
more advanced solution would include a data collecting mechanism that would act as a
“flight recorder” during execution and then stay in memory so it could be interrogated
about the software structure and probed for check-points easily mapped to source code.  

Copyright ⓒ 2014 Sternberg Consulting LLC

Sustainable software systems - Creating long lasting software

!
Supporting eco-systems!
Just as in nature, a process cannot be successful without support. In the realm of
software systems there are many interacting tools, processes and organizations, all
important to a system’s sustainability. This can be described as an intricate network of
interests all feeding of each other in some way. Here I will point out two specific support
systems that are easy to ignore but can be crucial to a systems survival: automatic test
harnesses and crowd participation.!!
Automatic test harnesses!
The role of an automatic test harness is not to tell us whether a developer’s most recent
contribution is working or not. The real reason is for it to act as an insurance policy
down the road, perhaps 6 month or 6 years from now. It will automatically tell us if a
recent change to the system mistakenly violated any existing functionality that so far
has been working fine. It is also a great tool when making a major upgrade to a system
as far as changing operating system, implementation language or data base system
(hint: upgrade the test harness first). It also makes a lot of sense to augment the test
harness with the type of software probing functionality that was defined in the previous
section.!!
Crowd participation!
This is the notion of treating the users as a part of the system. Most systems can not
grow past its initial data set and reach critical useful mass without the exponential
growth enabled by letting the crowd into it’s content creation and curation. It will always
be a fine balance between too much and too little control of what the crowd can do.
Either one can be devastating to a system.!!

Copyright ⓒ 2014 Sternberg Consulting LLC

Sustainable software systems - Creating long lasting software

!
Nature 2.0 - The Mammal Edge !
The comment earlier about nature not having any defense mechanism against diseases
is not entirely correct, mammals have more or less advanced and independent immune
systems to help stave off outside threats. Translated to software this can be an
invaluable approach for any hard to deploy scenarios, e.g. software running on
unmanaged mobile devices. There are numerous ways an unmanaged mobile device
can suffer a software issue/incident that couldn’t be detected as part of testing (unless
you have a NASA budget). Building an independent error detection and correction layer
could make a lot of sense. Make sure that such a layer is truly independent of the
underlying failing feature so that it can act as a backup system in case the primary one
indeed turned out to be faulty.!!
Another one of nature’s clever strategies becomes evident when looking at the
development of the mammal; starting with the Zygote all the way to the newborn we see
that nature is not aiming for the final result right away. Rather it iterates through many
stages to reach the final product. Applied to software development this means that it is
ok to start with a very simple implementation (sometimes called Minimal Viable Feature)
and then iterate/refactor until a more complex final solution emerges. This approach
works equally well for intermediate implementations to reach a final feature that seems
too complex to approach in one go, as for features that will be released to users in it’s
simpler form and only later mature into a more advanced manifestation.!!
Mammals also have one of the most extraordinary devices ever created either by man
or nature, the neocortex. The neocortex as manifested in humans holds the key to
building truly intelligent systems. Looking at Computer Science in general and Artificial
Intelligence in particular we have so far been going down the wrong paths altogether.
Neither one of the two major branches so far, decision trees and neural networks, have
managed to capture the intricacies of the human neocortex. Creating decision trees in
all it’s form (manually, programmatically, from examples, etc…) is not even close since
it’s still very much an algorithmic approach (which the neocortex isn’t) and most
attempts at creating neural network so far has either been too simple or ignored the
most important feature: having an hierarchical structure. The sooner we can get away
from the current trend of massive (but dumb) processing of “Big Data” and start focusing
on cracking the code on how to best simulate the human neocortex, the better. Any
attempt at such a simulation should at least contain the following elements: !
- Hierarchical structure.!
- Invariant representation.!
- Auto association.!
- Temporal sequencing.!
- Hebbian learning.!
- Forward and backward propagation.!
- Inhibition.!
!

Copyright ⓒ 2014 Sternberg Consulting LLC

Sustainable software systems - Creating long lasting software

!
Concluding remarks!
Time to wrap up the sustainability bag. The topics discussed so far might seem like
random banter but there is an underlying theme throughout. There are ubiquitous laws
of nature in play that effects all and everything. From formation of galaxies to the signal
paths in the human brain. At its core nature is a zero-sum game between opposing
forces simultaneously acting on both a macroscopic and microscopic level that affects
everything around us. From planetary movements to software system design. Ignoring
this and only take into account the latest man-made paradigm that happens to be in
vogue will always be a mistake. In the end the 2nd law of thermodynamic will emerge as
the final conqueror alas without any remaining audience to celebrate the victory.!!!
Until then whenever in doubt, push away from the keyboard and ask yourself: 
 
“What would nature do?”.

Copyright ⓒ 2014 Sternberg Consulting LLC

