
Amicable APIs
 am·i·ca·ble/ˈamikəbəl/

Adjective: Having a spirit of friendliness; without serious
disagreement or rancor.

Amicable APIs - Creating robust and long lasting interfaces

Copyright © 2012 Sternberg Consulting LLC

Introduction
The origin of this paper stems from the confusion I felt when I came to realize that
SOAP wasn’t really as wondrous as I had been led to believe after reading numerous
books on the subject - from simple SOAP definitions to advanced tomes by Thomas Erl.

A few years ago I had quickly written off the concept of Representational state transfer
as silly academia just trying to formalize the simple concept of browsing webpages. Also
after adding an http GET interface for address lookup to the .Net system I was then in
charge of, my thoughts of REST was that of “been there done that”. Except I had not
been there at all, not even in the ballpark. All I had done was to utilize a crudely
implemented XML-RPC interface (which unfortunately even today is all too common).
Back then I still thought that the automagically generated client proxy classes that my
VisualStudio.Net gave me after pointing it to the appropriate WSDL was the top of the
API evolution.

What finally made me see the light and allowed me to formulate the thoughts described
herein was the frustration felt after trying to have several internal and external teams
use a fairly complex SOAP interface that I took part in creating. It was decorated with all
sorts of WS-* protocols to put the local network security powers to be at peace,
including WS-Security, SAML tokens, a Secure Token Service and all sorts of network
and application firewalls. At the same time I was trying to create a public internet facing
REST version of our SOAP interfaces to align with some other existing REST APIs
already in place. To better understand what I was doing I got the O’Reilly book “RESTful
Web Services” by L. Richardson and S. Ruby. As I was reading this book something
“clicked” inside and I came to understand at a fundamental level what was wrong with
SOAP and why REST (and ROA) was a far more superior paradigm. Some concepts
seem to resonate with us at a deeper level rather than just being another set of rules to
follow. This has only happened a few times in my career. Fundamentally understanding
why Agile methodologies are better than Waterfall is another such Eureka moment.
If you haven’t read “RESTful Web Services” yet, please do. It’s the only text on REST
that you really need.

Amicable APIs - Creating robust and long lasting interfaces

Copyright © 2012 Sternberg Consulting LLC

Origins of Interfaces
It’s hard to say where and when the first Application Programing Interface was
introduced (I really tried to Google it), but one key observation regarding interfaces in
general was made as early as 1968 by Melvin Conway and is commonly referred to as
Conway’s law: “Any organization that designs a system will inevitably produce a design
whose structure is a copy of the organization's communication structure”. A more clear
way to rephrase this could be: Anywhere there’s a team boundary, you will find a
software boundary. More importantly is that from Conway’s law follows that the quality
of a system interface typically reflects the quality of the communication between the
groups involved.

Conway’s law is not a mere observation, it is a profound truth about group dynamics
and my experience is that it is equally valid in scenarios involving either internal or
external teams. So it’s important to realize that system interfaces are not selected
arbitrarily, but rather reflects the properties of the group in charge. Are they open to
ideas from outsiders? Are they protective or secretive? How do they relate to other
teams, both inside the organization but also outside of it, etc... The answer to those type
of questions will have a bigger impact on the technical properties of the system interface
than the actual technology stack used to create the system itself.

Modes of communication
In the light of Conway’s law, it is interesting to look at what constitutes high quality
communication between groups. In system development methodologies one often talks
about the concepts of ceremony and precision. Traditional waterfall methodologies as
practices by major consulting firms, contains a lot of processes, procedures and
documentation that can be plagued by both high ceremony and high precision. More
contemporary methods that typically are labeled “Agile” seems less so. Agile
methodologies tries to emphasize real honest communication between constituents,
where understanding rather than prestige seems to be the goal. Similarly, this should be
the goal in any exchange between teams tasked with making their systems interface.

Alas, be aware that natural langue can be somewhat treacherous, just look at the
seemingly innocent sentence: “Mary had a little lamb”. Think about how this sentence
changes meaning depending on which word is emphasized when spoken. “Mary had a
little lamb” (what about Ben or Lisa?). “Mary had a little lamb” (she no longer has one?).
“Mary had a little lamb” (but not two or three?). “Mary had a little lamb” (so it was not
medium sized?). “Mary had a little lamb” (but no cows or dogs?) or “Mary had a little
lamb?” v.s. “Mary had a little lamb!” This somewhat naive exercise tries to show the
futility in trusting written requirements specifications. Handing someone a requirement
specification is probably the worst way one can go about building a system. It gives the
author a false sense of accomplishment at best and is something to hide behind at
worst (what do you mean you don’t understand? it’s all in the spec!)

Amicable APIs - Creating robust and long lasting interfaces

Copyright © 2012 Sternberg Consulting LLC

This is not about requirements analysis, but since I brought it up - the real goal of
requirement analysis is to re-create the domain model that exists in the heads of the
domain experts into the collective consciousness of the development team (sometimes
it requires a good amount of “interviewing” before the concept of a formal model will
emerge). This process is best done as a team effort, face-to-face using props like
whiteboards, markers, post-its, etc...

So if formal meeting protocols and meticulously crafted and physically signed
agreements is not the answer to high quality inter team communication, what is?

The answer might be simpler than you think. In the early days of my career I was
fortunate enough to come across a piece of hardware that went under the name LISP
machine. One of the wonders of the LISP machine was it’s LISP interpreter which was
nicknamed DWIM - Do What I Mean. It parsed the input and tried to figure out what you
really wanted to type, despite misspellings and miss-matching parenthesis pairs.
It so happens that this concept also exists in inter human communication - it’s called
amicability...

I’ve been in countless meetings involving multiple teams where it was very obvious to
me what the current speaker was trying to communicate but was astonishingly met with
a stare of non-understanding or even worse, rude passive-aggressive remarks. Most
likely because the recipient didn’t think it was in his or hers interest to actually gain
understanding, their agenda was that of obfuscation and deceit or afflicted by the all to
common“Not Invented Here” syndrome.

Truly great interfaces can only be created and consumed when participants
communicate with an open mind and a willingness to understand each other. One
helpful advice I’ve taken to heart from the book “7 habits of highly effective people” by
Stephen Covey is “Seek first to understand, then to be understood”.

Amicability applied to interfaces
The same way the mode of human to human communication can either be ceremonious
and/or obfuscated v.s. open and amicable, so can the style of a system interface be.
On the one hand it can be full of precision, ceremony and intolerance (think SOAP
interface using WS-*, WDSLs and XML schema validation) v.s. robust and forgiving
(think HTTP using only simple verbs supporting multiple data representation formats).

But using XML-Schema validation and strong run-time typing of business objects is a
good thing... or is it? And besides it’s all controlled and interpreted by our modern
Eclipse and VisualStudio.Net IDEs anyway?
Lets take a look at what typically happens when a system needs to consume a new API
to connect to another system. Consuming an API really consists of two phases: 1)
establish system connectivity and get something back (SSL handshake error, SOAP
exception, 404, actual SOAP envelope, etc...). Call this syntactic connectivity.

Amicable APIs - Creating robust and long lasting interfaces

Copyright © 2012 Sternberg Consulting LLC

Then 2) establish information exchange (actually passing and consuming data back and
forth). Call this semantic connectivity.

Syntactic connectivity is typically done in conjunction with some network and security
engineers depending on the size of the moat and fortress your current organization has
established. This can take anything from a couple of hours up to a month, depending on
the complexity of network security, the level of inter team amicability, difference in
location/time zones and to some extent technical competence. And as the system build
propagates through deployment environments (sandbox, development, QA, UAT,
production-staging, production, etc...) this typically needs to be done all over again
since the security postures of these environment tends to be very different.

One of the biggest issues involving syntactic connectivity once you move outside the
comfort zone of basic SOAP over http:80 is interoperability. Most WS-* protocols are so
full of precision and complexity that organizations tend to get 3rd party software and/or
appliances to deal with it. Anyone ever involved in trying to connect two organizations
using different vendors to deal with SAML tokens knows what I mean.

Now over to semantic connectivity. Since no one is really manually designing their
WSDL definitions first, most SOAP solutions tend to reek of framework and
implementation details that stems from automatically created WDSL definitions. Some
of the constructs used by Spring or .Net might be completely foreign to the consuming
system and it’s developers. Same thing with your internal business objects or even
worse, database model. It almost requires a fortune teller reading tea-leaves to
understand the internal structure of an old school relational database using cryptic table
and field names based on some archaic data dictionary that no one dares to touch ever
since the last data architect left 5 years ago. Not to mention the reasons for the current
normalization effort (or lack thereof), Boyce-Codd normal form anyone? (BCNF is a.k.a
3.5 normal form). It’s an illusion that system interfaces are consumed by computers.
APIs are first and foremost consumed and interpreted by humans trying to build support
for the API into their own systems, only after that are APIs consumed by computers.

Well, it is what it is, right? Not so much when your competitors who were smart enough
to use a system interface based on principles of amicability spent all of a couple of
hours to establish syntactic and semantic connectivity. Compared to the time it can take
when dealing with unforgiving SOAP interfaces it can spell missed opportunities and
business disaster.

Amicable APIs - Creating robust and long lasting interfaces

Copyright © 2012 Sternberg Consulting LLC

Is REST Amicable?
So why is REST amicable and SOAP not?
REST isn’t necessarily more amicable than SOAP, but it’s a better candidate for building
amicable interfaces than SOAP for the following reasons:

• The REST metaphor aligns with the use of web browsers
Web browsers have been around for 15 years and it’s use is ubiquitous. No software
installation needed. Just type the URL and hit return. Done!

• Developers can interact with a REST interface without documentation
The amount of documentation needed to explain how to call a REST based API based
on a given URI is zero. Everyone knows how to use a web browser. In fact most
websites can be viewed as REST based APIs returning the MIME type of text/html.
Also a lot of information can be digested by just looking at what is returned.

• Since REST is limited and standardized, it’s easy to experiment with
The http protocol is purposefully limited and standardized. Most constraints (e.g. http
verbs, return codes, header variables, etc...) are known in advance (or can easily be
Googled) so developers are left with filling in the remaining blanks by playing around
with different types of URIs, resources and parameters. By looking at resulting data
and further digging in by following resource links they can gather a lot of
understanding in a short time.

• REST datasets doesn’t have to conform to a predefined schema
No support for XML-schema validation allows for robust interfaces that still functions
as usual even after new data points have been added. Besides, who uses XML
anymore, haven’t you heard of JSON?

Let me develop my points about minimal documentation and no schema validation a
little further.

Of course there need to be some level of documentation, especially to explain the part
of the API that is using POST, PUT and any type of security features (e.g. basic or
digest authentication, OAuth 1.0a, OAuth 2, etc...). However humans learns best from
examples. Our brains are basically highly specialized pattern matching machines that
loves to validate (or invalidate) an initial set of assumptions with actual examples in
order to establish a more refined abstraction model. Being fed this abstract model
directly typically doesn’t work as well.

Consider how data returned by an API is typically used in any given system. It either is
passed around internally through different levels of procedures/abstraction layers or is
being displayed on a screen. API data is less likely to be stored internally since it
typically is mastered by the external system that initially was called to access it.

Amicable APIs - Creating robust and long lasting interfaces

Copyright © 2012 Sternberg Consulting LLC

As long as it is being passed around the system, the data schema doesn’t really matter
(it’s just a pointer to a block of memory on the system stack or heap). Similarly, when
displayed on a screen all that matters is that it can be typecast/marshaled to a character
string (or whatever string class your flavor of framework is using). Typically only a
subset of all the API data is being displayed. The conclusion of this is that datatypes
doesn’t really matter, rather simpler is better. Most modern programming environments
in use today that interacts with REST based APIs can with only a couple of lines of code
convert any JSON or XML structure to a native data structure consisting of only object
arrays, object dictionaries and strings (although most also handles integers, floats and
Booleans as well). Data is then typically retrieved from a dictionary by providing the key
value that corresponds to a specific data string. Note that these structures although
simple by themselves, can create quite complex data structures with multiple levels of
dictionaries containing other dictionaries or arrays, etc. Also note how adding new data
nodes to this structure will have absolutely no effect on the robustness of the existing
use of it. I.e. the API is invariant as far as adding new data to it. This in combination with
the fact that only a few datatypes are involved is one of the key aspects of REST being
a great candidate for an amicable API.

Increased Amicability
How then would one go about and design an amicable API based on the foundations of
REST and ROA? The following is a list of amicable design patterns in no particular
order.

• Design the API with ROA in mind (Resource Oriented Architecture) as defined in the
book “RESTful Web Services”. Don’t just settle for using random URIs and some XML
like data. If you design the API with ROA in mind, others familiar with this style will be
able to pick up on your API in no time.

• Follow the KISS principle as much as possible. Keep URIs as simple as possible. E.g.
http://SomeDomain.com/PluralFormOfResource/IdentifyingElement.DocumentType.
Only design in terms of resource names and CRUD operations. Never use URIs that
contain verbs, that will take you to XML-RPC land faster than you can say REST.
Again, it’s really hard for someone to guess your verb URIs v.s. knowing that the only
resource types supported are X, Y and Z. Don’t be afraid to use sub-resources, they
are very helpful in allowing more precise operations. E.g. to update order quantity for a
line item on an order, it would be easier to access the line item through a URI and only
provide the updated data for that (i.e. ../orders/12345/items/2) rather then PUTing the
whole changed order to the URI ../orders/12345. The reason for using the plural form
of a resource name in the URI is amicability but also esthetics (it makes sense to use
the form ../orders.json to retrieve all orders and by consistently using plural form, there
will be less guessing).

Amicable APIs - Creating robust and long lasting interfaces

Copyright © 2012 Sternberg Consulting LLC

http://somedomain.com/resourcenameas
http://somedomain.com/resourcenameas

• No surprises, try to adhere to the official usage of HTTP result codes and variables
(and use as few of them as possible). But please provide some meaningful error
descriptions when returning any 400 or 500 codes.

• Allow for alternative URIs to access the same resource. This helps with the amicability
since it’s more likely a user would hit on a valid URI when playing around with the API.
E.g. accessing a user could be done with the canonical (preferred) URI http://
somedomain.com/users/userid.xml or equal valid URIs http://somedomain.com/users/
username.xml or http://somedomain.com/users/emailaddress.xml or http://
somedomain.com/users/cellphonenumber.xml etc... Sometimes it’s entirely possible to
figure out what the identifier is (i.e. id, name, email or phone#) by applying some
clever regular expression matching on the server side. E.g. ids are [0-9]+ ; names are
[A-Z][a-z]* ; emails are [0-9|a-z]+’@’[0-9|a-z]+’.’[a-z] + ; phone numbers are [0-9][0-9]
[0-9]’-’[0-9][0-9][0-9]’-’[0-9][0-9][0-9][0-9]. Formats will vary slightly between platforms.

• Allow for multiple document (data) formats (at least XML, JSON and HTML) and
multiple ways to request it (e.g. ending the URI with the document type .xml, .json, etc
or by providing the Accepts request header). If you allow the calling client to request
which data format to receive, it makes the API more versatile. Consider supporting a
simple HTML table tag version for each call to allow software implementers to
simulate full end-to-end functionality. To easier support PUT, POST and DELETE
operations, you can add some scaffolding forms whose POST operations with
accompanying application/x-www-form-urlencoded data pairings can then be
appropriately interpreted by the API backend. If the API is an extension of an existing
website, the client developers should be able to perform most website features using
the API in html mode together with the scaffolding forms. Some additional formats to
consider could be text/plain, text/cvs and why not .plist (xml format that allows native
NSArrays and NSDictionaries in iOS apps to be populated directly from a http
response using only one line of code).

• Minimize the need for versioning (there is no need for new versions as long as all
changes are backwards compatible, i.e. additions only).

• Design with worst case latency in mind. Think about how API data access patterns
could/should be different when a consuming client app is connected via a mobile edge
cellular network (i.e. even worse than 3G). v.s. sitting at Starbucks using a local WiFi
connection.

• Strictly follow the intention of POST vs PUT. Again, not to be a ROA fanatic, rather to
support the case for predictability. POST is done to create/update info when a unique
URI can’t be known (e.g. creating an order that will return a newly assigned order
number. PUT is used when creating/updating data using a canonical URI that uniquely
identifies a resources is known (e.g. creating a new tax payer record using the SSN as
the key - I know, it’s a pretty bad example in these times of privacy concerns).

Amicable APIs - Creating robust and long lasting interfaces

Copyright © 2012 Sternberg Consulting LLC

http://somedomain.com/users/userid.xml
http://somedomain.com/users/userid.xml
http://somedomain.com/users/userid.xml
http://somedomain.com/users/userid.xml
http://somedomain.com/users/userid.xml
http://somedomain.com/users/userid.xml
http://somedomain.com/users/userid.xml
http://somedomain.com/users/userid.xml
http://somedomain.com/users/userid.xml
http://somedomain.com/users/userid.xml
http://somedomain.com/users/userid.xml
http://somedomain.com/users/userid.xml
http://somedomain.com/users/userid.xml
http://somedomain.com/users/userid.xml

• Provide a stable test environment. It is important to understand the difference between
a QA environment for the API itself and a QA environment for client connectivity. QA
for the API itself is typically a pretty volatile environment with new deployments up to
several times a week. This should be utilized to perform quality assurance on new API
features. When clients are in dev/test, they need to be able to connect to an
environment that looks and feels like the current production environment for the API,
both in terms of security posture, features and actual data returned. Consider
providing a refreshable data storage that can be reset to a known set of test data
fixtures when needed. The test environment could be the same as production with an
additional URL parameter or request header to inform the API that this is a test call v.s.
actual production. The advantage with a separate environment is that it can also
support “preview” functionality in advance of features being deployed to production.

• If things do fail, provide meaningful error message that will identify the exact layer/
component/subsystem where the error occurred. This might not mean much to the
client side team, but it sure will help when they contact you because the clients keep
crashing. If all they can tell you is that they are getting the response “500 - Internal
Server Error” no one will be happy.

Authentication and Security
Okay, there’s a reason why this topic has been avoided so far. Authentication and
security standards are pretty lame and confusing as far as REST is concerned. I agree
that SOAP has more detailed defined standards for this, but said standards are
extremely complicated and tedious to implement, both on the server side and client
side. That being said, here are my recommendations for amicable authentication and
security practices when building a REST API:

• First of all think about the reasons you might have for adding authentication and
security features. Is the data involved sensitive from a corporate financial point of view
(e.g company secrets, credit card info, etc..), is it of privacy concerns (e.g. emails,
SSNs, etc...) or is it more a case of being able to control and/or throttle API resource
usage or all of the above? These questions will help you better understand why a
certain authentication or security feature might be helpful or just a hindrance.

• The most basic concern with any REST API is that it should be safe and idempotent.
Safe means that no matter how many times you submit an HTTP GET request, there
should be no data updates at all. GET is strictly considered a read operation. If your
GET is changing data you are doing XML-RPC not REST, period. Idempotent means
that no matter how many times you submit an HTTP GET, HEAD, PUT or DELETE the
effect should be exactly the same as when you submit it only once. For POSTs,
there’s no guarantee of idempotence, so the more you can encourage the use of your
PUT operations v.s. POSTs the better.

Amicable APIs - Creating robust and long lasting interfaces

Copyright © 2012 Sternberg Consulting LLC

• There’s really no reason for not using SSL (HTTPS) other than in extreme latency or
weak client processor scenarios.

• Even when using SSL, certain operations are so sensitive that you don’t want to risk
that someone could intercept them, change them and then resubmit the changes. In
these cases try to use a cryptographic hash. One great example is using HMAC-SHA1
which uses a shared secret between the server and client. Any call has to contain a
calculated hash that depends on the complete message (URI and body) so that it will
be invalid when checked on the server side, should any manipulation have occurred.
Also, the HMAC-SHA1 algorithm is being used by the fairly common OAuth 1.0a
protocol so most environments should have plenty of code libraries available to
implement the cryptographic hash part of OAuth 1.0a (forget about the rest of it, it’s
way too complicated).

• If you require an API key to be provided with each call, make sure your reasons for
doing so are clear and meaningful and not something you do just because. Reasons
might be tracking/billing individual accounts, apps, companies, etc... or allow for fine
grained throttling of API traffic.

• Consider using the appropriate HTTP request/response headers (i.e. WWW-
Authenticate and Authorization) for any authentication/security features rather than
lazily just tack them on as URL parameters (not good since they will be part of any
web browsers history audit trail).

• If using SSL is too taxing, consider obfuscating sensitive data elements using Base64
encoding (or similar) to prevent any outsider from peeking. Base64 can also be good
when there’s a risk that the data itself will interfere with the document structure (e.g.
using the ‘<‘ or ‘>’ characters between XML element tags). Similarly you could choose
to only apply a HMAC-SHA1 hash to certain data elements only v.s. the whole HTTP
request.

• Never ever submit userids and/or passwords in clear text, at least not as a URL
parameter and especially when NOT using SSL. Even submitting these in the HTTP
body or request header should be a big no-no. For simple cases there’s the HTTP
standard called Basic Authentication or better yet, use the one called Digest
Authentication. Great from an amicability point of view since they are fairly common
and well documented.

• For 3rd party access to a user’s data, there’s OAuth 2 (used by Facebook) and OAuth
1.0a (used by everyone else). OAuth is well documented and common but
unfortunately, at least OAuth 1.0a is very tedious and complex to learn. OAuth 2 is
less so and should be preferred over OAuth 1.0a from an amicability point of view.

• If you organization already are using some other token or claims based standard for
user authentication and/or security, don’t be afraid to come up with your own protocol
format to use with WWW-Authenticate and Authorization. Once you are comfortable

Amicable APIs - Creating robust and long lasting interfaces

Copyright © 2012 Sternberg Consulting LLC

with using the HTTP standard to implement your API, you’ll see that it’s not that hard
to come up with your own standards for authentication. Just try to make it logical and
amicable if at all possible (at least provide lots of documentation and test scaffolding).

• Consider providing a “naked” implementation of your API for testing purposes to allow
for easy learnings using a web browser. Just make sure to strip out any secret or
sensitive data.

Client-side Amicability
So far we have only been focusing on the server side, what about clients, what can they
do to increase the probability of success? Here’s a few pointers:

• Make sure that client side code can recover from network interruptions. It can be as
simple as enclosing any API interaction in a “try/catch” exception handling block.

• Don’t use any variables requiring strong compile time and/or run-time type checking.
Assume that API data can be augmented at any time. Use object arrays and
dictionaries to manage returned data. Allow objects to be strings, integers, floats or
booleans (or treat all data elements as strings).

• Don’t hardcode any initial URIs or security/authentication parameters. Use boot-
strapping where all initial values are provided by a service fully under the client side
team’s control. Provide an interface where these can be instantly updated without any
need for redeployment.

• Consider implementing client side caching to provide an uninterrupted experience
should a network issue arise.

• Create a lot of automatic tests for scenarios that involves the API. Run these tests
frequently to make sure that the API behaves as expected.

Amicable APIs - Creating robust and long lasting interfaces

Copyright © 2012 Sternberg Consulting LLC

Final thoughts
Be aware of the cruelty of the 2nd law of thermodynamics. It is as fundamental as any
other natural power. It affects software systems as much as any other natural
phenomena out there. In it’s most basic form it predicts with a 100% certainty that any
system left unattended will sooner or later fail. Adhering to the principles of amicability
will for sure prolong such a fate. Another important safety measure is to try to minimize
the total number of separate systems involved in any one call-chain interaction between
the client and the backend system that the API is supporting. Let’s look a little closer at
the math behind the above claims.

The best analogy for understanding the effects of the 2nd law of thermodynamics on
any computer system is statistical mechanics. According to this theory the number of
possible combinations of values that a system’s internal state (instance variables,
associated database records, etc…) can have can be defined as the possible micro
states of that system. These micro states can then be grouped into clusters so that each
cluster defines a high-level state (e.g. active, inactive, working, crashed, waiting, etc…).
Each such cluster can then be defined as the possible macro states for that system.
This micro/macro state definition corresponds directly to the entropy concept defined by
statistical mechanics. The entropy of a macro state is defined as the number of micro
states that it includes. In combination with the 2nd law of thermodynamics we get:
Unless work is done, a system’s entropy will always increase until it gets to a macro
state with the highest possible entropy. I.e. if a software systems is not maintained each
of the components will in time always reach the most probable macro state (which
typically is “crashed”).

The reason for minimizing the number of involved systems in any call chain is equally
simple. Say that we have 6 systems involved (e.g. client, network infrastructure,
application firewall, API server, business object server, database server) and each
system have a probability of “working just fine” equal to 90% (or 0.90). Then the
probability for the total call chain to “work just fine” is equal to: 0.90 x 0.90 x 0.90 x 0.90
x 0.90 x 0.90 = 0.53 = 53%

Amicable APIs - Creating robust and long lasting interfaces

Copyright © 2012 Sternberg Consulting LLC

